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ON THE THEORY OF ANISOTROPIC ELASTIC
SHELLS AND PLATES

Liviu LiBrescu

Institute of Fluid Mechanics, Aeromechanics Division, Bucharest, Roumania

Abstract—This paper presents a linear theory of homogeneous anisotropic elastic plates and shells, established
without considering the Love—Kirchhoff assumptions.$

The boundary conditions on the external bounding surfaces of the shell are rigorously satisfied. No restric-
tion is made as regards the thickness of the shell which permits a study of thick plates and shells. Finally, with
the aid of the results obtained in the first part, the problem of anisotropic elastic plates is examined.

1. GEOMETRICAL CONSIDERATIONS

THE shell may be defined as a region of space, bounded by two surfaces s¥(z = +h/2),
symmetrically placed with respect to the middle surface s, (z = 0}, and to a lateral cylindrical
surface ¥ with the generators parallel to the z axis. The position vector of a point of the
shell space may be defined by

RO, %2, x3) = r(x!, x3)+x°n 18))

where n is the unit vector, x> = z(—h/2 < z < h/2) the distance of the respective point to
the middle surface, h the constant thickness of the shell, r = r(x*) the position vector of
an arbitrary point of the middle surface, and x* (1 = 1, 2)} the Gaussian coordinates of
the points of surface. We denote by

ar R

a, = Fo a,; = a,a; and g = F &ij = B:8;

the vectors of the covariant basis and the covariant components, of the metric tensor
corresponding to the middle surface and to the shell space respectively.

In the following, the partial derivative of a vector or tensor with respect to the coordinate
x/ will be indicated by the subscript j preceded by a comma, the space covariant derivative
will be indicated by a double vertical line and the surface covariant derivative by a Greek
subscript preceded by a single vertical line.

Taking into account that the space Christoffel-symbols of the second kind I'% may
be expressed in terms of corresponding surface quantities by relations [3, 4],

1 A comprehensive discussion of the contents and error involved in the Love~Kirchhoff assumptions has been
given by Koiter [1, 2].
1 Throughout this paper Greek indices take the values 1, 2 and Latin indices the values 1, 2, 3.
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where Fﬁ? = [pj(x", 0) are the surface Christoffel-symbols of the second kind, b,; and
¢ug = bjb,, the second and the third fundamental tensor of the middle surface respectively,

§or = (n+ Dar(pr); (1.3)
are the coefficients of z" of the expansion into series of g“" where [5]
BO% = &, (b =
(bn)a — b).(b(n lb) _ ba(b(n—k))/l (14)

(& being the Kronecker symbol), the spatial derivatives of a spatial vector may be expressed
with the aid of the surface derivatives as follows [3, 4]

Vg = Vaig = Vabag + 2(V3co + Vo big) + 22V, 05b5 5 + . .

n “mO (n‘-l)um Q
o =V g Mgt 2L gh,0)

(n Z)w
7:(b(m «lf + Faﬁcpn)] +.

Vs = Vs + Vo [b2+2¢2 +22bc + . +z"(""°‘b Cglorc 4., (1Y)

Vija = Vapt Vo[ b2 +2¢2 4+ 22b0c + . + 2@, ~"g e 0+ ... |

2. PHYSICAL EQUATIONS

The stress-strain equations or vice-versa, written for an elastic homogeneous and
anisotropic body are given by

Tij = Eij“ekb (ekl = Fkimnrmn) (2~1)

where ¥ is the symmetrical stress tensor, e;; the strain tensor, and EV™, F, ;u the tensors
of elasticity moduli of the body, whose symmetry and homogeneity properties are given
in [6]. The conditions which define the anisotropy of the type of the elastic symmetry with
respect the surface x¥ = const., or the orthotropy are given in [6].

T All the developments into scrics of positive integer powers of the variable x> = z are assumed to be absolutely

and uniformly convergent within the interval | — /2, h/2).
The magnitudes affected by a ncgative order number (n — i) will be assumed equal to 7er0( P W 0,ifk > 0).



On the theory of anisotropic elastic shells and plates 55

In the case of a transversely isotropic body, we have
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Faﬁwp E 2 gawgﬁp+ga:pg§m gaﬂgwp >
v 1 1
Fop3z = "‘E‘,gaa; Foa03 = Egaw; Fy333 = I
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where E, v are Young’s modulus and Poisson’s ratio, respectively, corresponding to the
isotropy surface (the surface parallel at each point to x* = const.)and E’, v, G’ are Young’s
modulus, Poisson’s ratio and the shear modulus, respectively, corresponding to the
plane normal to the isotropy surface.

We observe that the tensors EV* and F,,,, are spatial tensors, and by using the trans-
formation relations between the spatial and surface components of a tensor [ 5], we obtain
the expressions below, [3], which will be of use in our next considerations

i LY N

(0) (1) (n)
sz[333 - EuB33+ZEaﬂ33+ . +anaﬁ33+ o

{0 0 (1 (2
3333 __ 3333 . 2
E - E) d Fa3w3 - I;a3m3 +z a3w3+z F)¢3m3
where

(Eluﬁ)'é (E)rxﬂvé( A9, (i?aﬁ?’a - apas( 29, o w3 = & w3wal A").

In the following, the consxdered anisotropy will be of the type of elastic symmetry,
with respect to the surface x* = const.} Accordingly, the physical equations are given by

w33
n __ Fonap 33
=k ""mn*"}_;;3333r

e 33 330 - w3
€33 = (" —E Peg,), €3 = 2F 3,317,

E3333 P
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w33 533ep
Ewmrp Eomep E E
E3333

+ For the remaining cases of anisotropy, the results can be deduced, obviously, by particularizing the relations
obtained for this type of anisotropy.
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3. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

The equilibrium equations and the boundary conditions of the shell will be deduced
by using a variational principle of the three-dimensional elastostatics,t which may be
formulated as follows:

From all the possible states of stress, the only one which takes place, assigns to the
functional

»

J = j PHV dx'dx?dx’+[  PVdQ+ L}m g m(V*—V)dQ

P}

X ‘ (3.1
"j {W”le[eik”%(l/;dfi+ Vqlk)]}(\/g) dx! dx? dx*

a stationary value.

In (3.1) the following notations were used: V is the displacement vector, W the elastic
potential per unit volume of the unstrained body; Q the boundary of the body of volume
7; v, the portion of the boundary Q on which the displacement vector V* is prescribed;
Qp, the portion of the boundary © on which the surface force vector P is prescribed; m;
the components of the unit vector of the internal normal to the boundary; H = (\/g)F
where F = Fig, is the body force vector per unit mass; g = |gl, p the density.

In the case of the shell, assuming dH = JP, we obtain from (3.1} [15],

B2
51=§ J—J (T..,,.+pH)5Vdadz+j (T2 4 P) 6V dQ
a\/ a) _wa QP) J
hi2
+J (V¥ —V) 8(z*gm;) dQ + J f (r*'*-Efkm"e,,m)( \/ g)éeigda &z (32
ov) g ~h/2

Rz
+ [eik'"i(v;}}k’*" I’;q{g):} (\/E) dt*dodz =0
o J —hi2 2 a

where do = (/a)dx' dx? is the element of area of the middle surface:

T, = (Joir'*g = (V)37 +<n)
the stress vector {6, 16, 17];

i-o—a is fE (33

Considering that the variations of the displacements, stresses and strains in the interior
and on the boundary of the shell are taken independently and assuming

) (i%au %n) Z (3.4)8

T In papers [7, 8] the Lagrange variational principle is used in the deduction of the equilibrium equations and
boundary conditions for plates and shells of moderate thickness.

1 This variational principle [9-11] constitutes a generalization of that due to Reissner [12]. For the three-
dimensional elastodynamics a generalized Hamilton principle is given in [13]. (See also [14])

§Seee.g.[7, 8, 17-20].
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from the condition 6J = 0, we obtain:
(i) the equilibrium equations

h/2
j (T, +pH)z"dz =0, (n=0,1,...) (3.5)
—h/2
(ii) the natural boundary conditions on Qp,
j (T,.—'-"—"+P) sVdQ =0 (3.6)
oP) \/g
(iii) the natural boundary conditions on Qy,
j (V* = V) 8(r*m,g,) dQ = 0. (3.7)
Q(V)
Taking into account (3.3), equations (3.5) may be written in the form {3, 4]
N&a—nQa- 1+ b LG +[2"P M+ 73, =0 *
e —1Q— 1)+ bpeLlf +[ a2 @ (n=0,1,..) *)

/2
Lwn=J-h 'llwennd’ N(':)= w3 nd,
) w2 9T 2 4z () f-;./z z
h/2
0= [ i 3.9t
) ~h/2
hi2 hi2
FE = j L PARFT Az, F = J i pAF3z"dz
which define the tensor components of the nth-order stress and body force couples respec-
tively.

From (3.6) we obtain:
(a) The conditions on the bounding surfaces s* of the shell [3, 4]

[lfsazn]h/h/z = Py [Az "]hli/z = P(n) n=0,1,..) (3.10)
where we have used the notations
[AP«Z"]h—/ﬁ/z = Dy [U)S "]h/n/z = P(n) (3.11)

Forn=2+1(t=0,1,...)
h 2t

h 2t N
P(5:+1) = (5) P(’f), P(gt+1) = (5) Py

and forn=2t,(t=0,1,..))

h 2t h 2t s
péy = (‘2’) Pdy P(gc) = (5) Doy

+ Besides, the nth-order moment of the three-dimensional equilibrium equations (3.5) from 6J = 0 the
nth-order moments of the physical and of the geometrical equations corresponding to the three-dimensional
elasticity also result. We shall not use the moments of these last equations but the equations themselves. A theory
of plates based on the consideration of the nth-order moments of the fundamental equations of the three-dimen-
sional elasticity is developed in [21, 22].

T Equations (3.8) may also represent the motion equations of the three-dimensional element of the shell
through the replacing in (3.9); of the components F’ by F'— fi[24], where f* is the acceleration vector. In the
following we consider F' = fi = 0,
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(b) The natural static boundary conditions on Cp,

h/2

[ Jas P, eyt dz = 0,
—h/2

CRj2

|, VXN Pt Ty iyl dz = 0, (3.12)
hi2
| V@SP4l dz =0 (n=0,1,..).
—h/2
(c) The natural geometric boundary conditions on C,y,
hi2 )
[ JEs)(vE—vzdz =0,
—h/2
h/2
j V@ XN VE- V2" dz = 0, (3.13)

h/2
| @3 dz =0 (n=0,1,...)

where © = 7,a* and v = y,a* are the unit vector tangent and normal respectively to the
smooth curve C resulting from the intersection of the surfaces  and s, (z = 0), x* = x*(u)
are the parametric equations of the curve C, x* = dx*/du.

4. EXPRESSIONS FOR STRAINS AND DISPLACEMENTS

On the basis of the strain—displacement linear equations

€y = %(Vq;k‘*' Vaid) 4.1)

and using the physical equations (2.10),, (2.10); and relations (1.5),, (1.5);, we deduce the
equations [3, 4]

Vis = 4F,3;30% = Vs = 2V, [b2 4+ 262+ 22b5c2 + ... +2(§%,,—"g " 2c,)+ ..,

4.2)

_ 33 _ p33ap
33 = E3333(T E""%c,,)

which permit one to obtain the components of the vector ¥(x* x3)[3, 4, 18],

(1) (0) 0 (0) 0) ()]
V, =4F,3,s AAT)— V3, —2V b2,

@) © M Wy (O © ey
2V, = &F 13P3A-+—Fa3p3A)(/1r"3)+4Fa3p3A(lr” )—V“—ZV by — 2V wCas e o

(n) (n—1) (0) (n—2) 1) (0) (n— 1) (0) 3
nVy, =40 F 3p3A+ F 5,3A+ ... +Fu35 A)AT")

43
(n—2) 0) (n=-3) (1) 0) (n—2) 3 ( )
+4( F a3p3A+ F a3p3A+"'+Fa3p3 A )(i.[p)
) 0 =1 3 (n—1) ) (n— l)w}. (n— 2m
+ .. H4F 5,5AA T )~ V5, -2V, ( g “b,— g “c,)
(1) (n—2) (n— 3) n-1)

( g w). u/l_ a,{) =2V wb:)’
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where e, is the coefficient of z' of the expansion into series of e,s, determined from (4.1)
and (1.5),
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Taking into account relations (2.10) (2.9), the stress—strain relations may be written
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)
In relations (4.5), (4.3), (4t ®) represent the coefficients of z" of the expansion into series
of it'3, [3,4,25]

. (2 ) h? 3) h? (2,,) h2n
it = p“’+p‘°’z+ ® (z —Z)+(p z(zz—z)+ e 40 (zz"———

h h 22n
4.7)
2n+ 1)1' n h3n
+ ¢ zjz 57 + ...
and A = 1/4.

The functions ((p'?" = (('B"(x"), (n = 2, 3,...) together with the displacements of the middle
(0)
surface V(x*) constitute the basic unknowns of the problem. In the case of the Nth-order

approximation of the development (4.7)F (N = 2,3,...). by replacing the expression of
the nth-order stress couples (n = 0, 1,... (N —1)) in the equilibrium equations (3.8), we

obtain a system of 3N partial differential equations for the 3N unknowns of the problems
© © @ W
Vo Vi, @0,... @'

In all the previous developments no restriction concerning the shell thickness was
made, a fact which makes possible a study of the problem of thick shells.

5. POSSIBILITY OF REDUCING THE NUMBER OF UNKNOWNS

In papers[3, 4] the system of equations

267 = — (1) = (TN + (A7)
(Zn) (2n—1) (2n—-1) (2n—~2)
2ned3=—( t "3)|a—(i T et (A T )y, (5.1
(2n+1)(2n(; Dy _ __u(zrn)ﬂ)l —(l "“")bw+( Pk nw) Can -
was deduced, which permits the determination of the functions ((f)) eens ($3, ... by means

of the remaining unknowns of the problem. Since (A2%%) contains in general case (4733

under differential form, [3], the solution of this system of equations is laborious. In some
particular cases, however (e.g. in the case of the plane plate or when additional assumptions
are introduced), the system (5.1) becomes an algebraic system of equations. Thus in the

case of the Nth-order approximation of the expansion (4.7) ((2/)) 3x9), ... ,(N<+p”3(x"), ... may

be expressed by the functions ((f))”(x"),. ces %’"(x’), ... which together with ¥(x*) constitute
the basic unknowns of the problem. We obtain in this case a system of (2N + 1) equations
with (2N + 1) unknowns, indicated above. We mentioned that the manner of determining

the functions ((23(x°‘) results in the fact that from the system of equilibrium equations (3.8),
the equations indicated by a star are identically satisfied, (for n > 1).

r)
+In the case of the Nth-order approximation of (4.7), ¢' = 0if r > n.
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6. PLATE EQUATIONS
consideration of the middle surface as a plane surface leads to certain simplifica-

In this case the equations and the natural boundary conditions may be grouped as
follows}

(a)

Am <

B, !

-
Lo —nNG -1+ oy = 0,

{n) 1 (n) {n)
eaﬁ = ﬂvalﬂ + Vma)a
(n) (n—1) 3 (n-1)

"(4 a3p3 T i 4 3,a)9

., hn+1(1n+1 (_1)n+1)(0) hﬂ+2(1n+2m(_1)n+2){0)
(n) Ewrzﬁ[ T €. —er e¢g+...
(n+1)2 (n+2)2
hn+p+1(1n+p+1_(_I)n+p+1)(p)
T eaﬂ+ ces
(n+p4+1)2"+F
Eum33 hn+1(1n+1_(_1)n+1)(0)33
E3333 nt )2t T
hn+r+1(1n+r+l ( )n+r+1)(r)33
,r=0,1,...)
L T + ®.r=01...)
f 3 3
Na=1Qin- 1+ P = 0,
n (n— 1) agt— 1)
3= E3333( S A B)’
. _ hn+1(1n+1 ( 1)n+1 hn+2(1n+2 ( 1)n+2)p0
™ (n+1)2"+1 h (n+2)2"+2 h
hn-&-s(1n+3m(_1)n+3_1n+1__(_1)n+1 @),
3 n+3 n+1 e
hn+4(1n+4_(“1)n+4_1n+2__(_1)n+2)(3)a
nte n+4 n+2 ?
+hn+2p+1 1n+2p+1¢_(_1)n+2p+1 1n+1_(w1)n+1 @p),
ntiptd n+ip+1 n+1
+hn+2p+2 1n+2p+2_(_1)n+2p+2 1n+2___(__1)n+2 (2p+1)a
r+2e¥2 n+2p+2  n+2
L P=12..).

- 10
% In this case we have b,y = 0 and hence B = E' F,_ = F,j,,,,. Likewise, the order of the covariant
differentiation with respect to the surface coordinates x* is immaterial,
1 The sense of this grouping of equations will appear as obvious in the following considerations.
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(b) Natural static boundary conditions

hi2
Lot + | Prrztdz =0,
A o2

(n}

B2
Lesv,v, + e Pyv,2"dz = 0,

B(,’,,{ Niyra+ | " pirdz =0
—h/2
{c) Natural geometric boundary conditions
a \:h” 1(1,,“_(_ 1)n+ 1)(8} +hn+p+{(1n+p+l *(__ 1)n+p+1)(p) N :Iv“
(n+41)2"*1 o (n4p+1)2ntrtt £

hi2
=[" wrrrd,
—h{2

A
n) [hn+1(1n+1_(_1)n+1)(£} N +hn+p+l(1n+p+1_{mI}n+p+l(p) . ]Ta
(n+1)2*1 e (n+p+1)27+P*! £
hi2
:j Vir*zhdz.
~ ~hj2
hn+1(1n+l_(_1)yx+l)‘0) hn+r+l(1n+r+1_(_l)n+r+l)(r)
. ezt T T T et
hi2
=j Vizdz  (pr=0,1,...)
~hj2

The sets of equations (4,), (B,), together with the boundary conditions (4;), (B;) or
(Ay), (By), fall into two independent groups, namely (4,,), (B, ) to which we associate
the boundary conditions (45,), (By,1 1) or {43,), (B3,.,), {¢ = 0.1,...) and respectively
(A24+41) (By,) with the boundary conditions (43, 1), (B3,) or (43,44), (B3,), (g =0, 1,...).
The first group of equations corresponds to the state of stress of the type known as
generalized plane stress and the latter one to transverse bending of plates. In view of
their complexity, these groups of equations will not be written explicitly here.

7. THE EQUATIONS OF PLATES OF MODERATE THICKNESS
The equations for plates of moderate thickness will be deduced by considering simul-
taneously [7, 8, 26-31]
kf2h?
L2
where L is a characteristic dimension of the mid-plane, f; the variation index of the state

of stress [32], k and f, are physical factors defined respectively by the maximum of ratios,
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where ¢, and s, are the elastic coefficients in Cartesian rectangular coordinates, corre-
sponding to E4Y and FY, , respectively.

In this case it is sufficient to consider the third order approximation of the expansion
4.7),

h ( hz) @ h2)
p3 _ ) p 2 [ __
T h +p (O)h (P z 2 + @z Z 2 . (7.3)

From system (5.1), taking into consideration (7.3), we obtain for

© 50 @) 3 “)
133 = 73340342238 43 M (7.4)
where
@33 _ Pu) he)
T ~h -t ppo)lp 4(pfp’
()33 1 h*(2)
T = hp‘“'”+ >
2 (7.5)
@33 1 (3)
T = 2hp(0)|p+ (pfp’
333 1(2) @33 _ 1(3)
T = fw T f"

8. EQUATIONS FOR THE TRANSVERSE BENDING OF PLATES OF
MODERATE THICKNESS

Taking into account the groups of equations (A4,,,,), (B,,) (Section 6), and using
relations (7.1)—(7.5), we deduce the expressions for t¥/ corresponding to this state of stress.

h2
ws = oy ) (227)’

(1)
133 =P 33 4 3933 (8.1)
Eum33 e 3
334 333
= Fomab(;¢ stz eaﬂ)+E3333(z T33),

. () @
The unknown functions are V5 and ¢*.

Taking into account the relations given in Sections 6 and 9 (see also [3, 4]) by satisfying
the equilibrium equations

Lzol’;lw_NfO)‘l'Pfl) =0,

8.2)
N@yw+piy =0
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. . L . .o 2)
we obtain the following governing partial differential equations in V; and ¢*

hZ E33).(p(0)

& opap
E\'DP V3|aﬁ(1) 40 E3333 V3M¢aﬁw

- @ 2
+§h2E pB(Fa313¢fﬂw+Fp313¢ﬁzw)
8.3)

1 E“"’ 33 2
(2)g Fwpaf A A
—Sh E3333<P|m ZE (Fa323P{0)0 + Fp323P(1))aws)

1 Eords . 2 e
+7 Fassllope ~29° =0, g( Py~ P = O.

The sixth order of this system of equations requires three boundary conditions on
each edge. These static and geometric natural boundary conditions may easily be obtained
from the corresponding expressions contained in Section 6, and are given by (4}), (Bp)
and (A417), (Bg), (p = 3, r = 2), respectively.

9. STRETCHING EQUATIONS FOR PLATES OF MODERATE
THICKNESS-GENERALIZED PLANE STRESS

Taking into account the groups of equations (4,,), (B,,. ) (Section 6) and relations
(7.1)7.4) we deduce the expressions of t corresponding to this state of stress

REANEN h*
= p(());;‘f” @7z (ZZ"‘?),

(0) (2) (4)
133 33+22 33_*_241_33
(2) (4) ©-
Ewmzﬂ( + ZZ e o +Z4 e aﬂ)

E“”'”‘ (0) @ “)
( 33+ 2 33+Z41«'33)-

E3333

©) 6]
The unknowns are V, and ¢*
Taking into account the relations given in Sections 6 and 7 (see also [3, 4]) by satis-

fying the equilibrium equations

Lio+Plo, =0,

. h\?
Lo — 2N, + (5) Ploy =0,

(©)
the following system of equations in ¥, and (p are obtained
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The static or geometric natural boundary conditions may be obtained by using ex-
pressions (A4g), (B}) or (Ag), (B), (p = 4, r = 3) respectively, which were given in Section 6.

10. THE TRANSVERSE BENDING FOR RECTANGULAR PLATES OF
MODERATE THICKNESS

As an example we consider the transverse bending of rectangular plates made of a
transversely isotropic material.

The plate edges (« = 0,a; f = 0, b) are assumed to be simply supported and hence
along them, the moments and the deflection are assumed to vanish.

We consider that the loads are distributed according to the law

sm sm np 10.1
Py = Ploy 5 S (10.1)
The expressions
. m T
((i))l = Bcosﬂsmi, (é))z = Csmlcos—-ﬁ-
a b a b’

(10.2)

i}” A sm mp
= 1 R — —_—

3 S n 4 b

satisfy all the conditions on the plate edges [27].
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Taking into account relations (2.2), (10.1), (10.2) in equations (8.3), we deduce the
following expression for the deflection of the plate center

m2h¥(1+¢?) [E(l—v2) VE

(0) (0) 10a? G(1—v}) E(1—v)
Vy=(V ’
3 ( 3)N 1 B 7'[2h2(1 +(P2) Ev’ (10 3)
40a> E(1-v)
where
(©) 12pg,a*(1—v?), a
(), = 2@’ (L=v) _4 (10.4)

ER+o2 . 7%

In the following, for the case of the isotropic quadratic plate (h/a = 3;v = 0,3; ¢ = 1)
we shall compare the expression of the deflection of the plate centre, obtained by various
theories:

The exact theory [33] The suggested theory The classical theory

(0) o E
(V3). = V3T 3492 335 2:27
Dy

Results concerning the transverse deflection obtained in this example, show, on one
hand a good correlation with values obtained within the exact theory (the deviation
being of 425 per cent) while on the other hand a difference of 32:2 per cent is obtained,
with respect to the classical theory.

By contrast with this case, the relation (10.3) permits one to infer readily (it should
be remarked however, that these conclusions are general in character being not limited
only to the case of anisotropic plane plates) that even for *‘geometrically thin’ anisotropic
plates (h?/L? < 1), a more refined theory might lead to results quite different from those
obtained within the classical theory, if the material possesses a high degree of anisotropyt
(the anisotropy degree is defined by the maximum value of the ratios (7.2),)

11. DISCUSSION

The present paper develops a theory of elastic anisotropic shells and plates, the Love-
Kirchhoff hypothesis being abrogated. Implicitly the contradictions introduced by this
hypothesis are eliminated. No restrictions are made concerning the thickness of the shell
or plate. The theory is approached within a general framework so that, by particulariza-
tion, one can obtain a series of results previously deduced.

(i) Thus: the equation given in Sections 4 and 8 contain the results deduced by
Ambartsumian for anisotropic shells of moderate thickness in the case e;; = t>* =0
[28,29] and for plates of moderate thickness in the case e;; = 0 [27, 29, 30] as well as
those deduced by Mushtari and by Teregulov [7, 8] for the case of isotropic plates of
moderate thickness.

Also, our results are in agreement with those deduced by Vekua [23] for thin shallow

+ This conclusion was first made evident by Ambartsumian [28-31].
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isotropic shells, or with the linearized version of Habip’s equations [14}, deduced for
anisotropic shells, in the case of the lincar variation of the displacements through the

thickness.
(ii) The theory presented in [26, 27-29, 34, 35] leads, within the frame of our example

()
(Section 10), to values of the deflection ( V3). larger than that obtained through the exact
theory [33]; in contrast with these theories, the proposed theoryt leads to a value of

(0) . .
{V3)c which is close to the exact one, but inside the domain between the classic and the
exact theory.
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Résumé—Cette étude présente une théorie linéaire pour les plaques et les coques homogénes, anisotropigues et
élastiques, établie sans prendre en considération les hypothéses de Love—Kirchhoff.

Les conditions aux limites sur les surfaces extericures de la coque sont rigoureusement satisfaites. Aucune
restriction n'est portée sur I'épaisseur de la coque ce qui permet une étude des plaques et discoques épaisses.
Pour conclure, le probléme des plaques anisotropiques élastiques et examiné a 'aide des résultats obtenus dans
la premiére partie.

Zusammenfasseng—Diese Arbeit behandelt die lineare Theorie anisotropischer elastischer Platten und Schalen,
chne die Love-Kirchhoff’schen Voraussetzungen zu beriicksichtigen.

Die Randwertsbedingungen der dusseren Grenzen werden erfiillt. Keinerlei Einschrankungen der Schalen-
dicke werden gemacht, dies ermdglicht die Untersuchung dicker Schalen und Winde. Schliesslich werden mit
Hilfe der Resultate, die im ersten Teil erzielt wurden, die Probleme elastischer anisotropischer Platten untersucht.

AbcrpakTt—B Hactosielt paboTe NPUBOMNTCH HEIMHEHHAS TEOPHA OOHODPOIHBIX AHW3IOTPOIHBIX YIPYTHX
obonouex, paspaborannas 6e3 yuéra reopuit Jlasa-Kupxropda.

T'pasuunbie YC/IOBHS BHEUIHMX NOBEPXHOCTEH OGONOYKY CTPOro yAomieTBopeHsi. Hukakoro orpauu-
ACHAA HE HAKJAABIBACTS HA TOJILKHY OGOJIOUKH, YTO IO3BOISIET UPOBECTH HCCHAOBAHUE TOJICTHIX JIFOCTHHOK
¥ obomouex. B 3aKHOYEHMHM 3amada AHMIOTPOMHBIX YHPYLIX MKCTHHOK PACCMATPUBACTS MPH HOTOLUM
pPe3yAbTATOB, NOJYYEHHbBIX B EPBOH 4acTH, CTATOM.



